Operating Manual

VRZ 965 HEIDENHAIN POSITIP

HEIDENHAIN（G．B．）LTD． 200 LONDON ROAD BURGESS HILL WEST SUSSEX RH15 9RD

DR．JOHANNES HEIDENHAIN

Feinmechanik，Optik und Elektronik • Präzisionsteilungen Postfach 1260 －D－8225 Traunreut • Telefon（08669）31－1 Telex 56831 －Telegrammanschrift DIADUR Traunreut

$$
\begin{aligned}
& \text { Y +lこヨ45.EDロ } \\
& \begin{array}{rlll}
& X & 7 & 8 \\
M & 9 \\
Y & 4 & 5 & 6 \\
C E & 1 & 2 & 3 \\
C E & 0 & \cdot & 4
\end{array} \\
& \text { z +12ヨ45.600 }
\end{aligned}
$$

OPERATING INSTRUCTIONS
 VRZ 965
 HEIDENHAIN POSITIP

Keys for value entry and axis selection

Key Symbol	Abbreviation for	Description	SECTION
$0 . .9$		Keys for entering numerical values (decimal keyboard); For entering nominal position values, block no's, subroutine no's, tool no's, tool length and radius compensation values.	B3
-		Decimal point key	B3
+		Sign change	B3
$X \mathrm{Y}$		Axis keys for selection of the axis to be traversed, setting the origin, setting the spindle axis during a tool-call. When an axis is selected, the corresponding lamp is illuminated.	$\begin{aligned} & \text { E1, F3 } \\ & \text { F4.1 } \end{aligned}$
I		```Chain dimensions (incremental measurement). If incremental entry is selected, the lamp is illuminated. Absolute Mode Input: I Switched off.```	F4.1
CE	Clear Entry	For the deletion of entry values and clearing error messages.	B3, C

OPERATING MODE KEYS

Basic Symbols	Description
\beth	Single block
\square	Program memory
\cap	Program mode

Key Symbol	Description	Section
m	Actual value display	

(
the POSITIP acts as an actual value display.

1. In this operating mode

E1

E2 automatic storage of the REF-values (position values relative to the reference marks).
4. Traversing of the reference marks.

Positioning with display of remainder of traverse

Absolute and incremental dimensions may be positioned without storage in memory by
"traversing to zero".

Entry and editing of programs

The program may consist of the
following program blocks:
Positioning block

Key Symbol	Description Section	
	Tool definition Tool call Setting a label (program mark) Calling a label (program mark) Programmed stop	
Q	Single block program run In this operating mode, the stored program may be run block by block restarting the program after each individual block has been executed. After each restart, the path still to be traversed is displayed in the actual value display of the corresponding axis, and should be brought to zero by traversing in this axis.	H
θ	Automatic Program Run In this operating mode, the stored program may be run to its end or to a programmed STOP with a single press of the start-button. The path still to be traversed in each individual block is displayed in the actual value display, and should be brought to zero by traversing along the corresponding axis.	H

Key Symbol	Description "Secter	Section
${ }^{1 \times 2}$		D

GOGRAMMING- AND OPERATING KEYS

Key Symbol	Abbreviation for	Description	Section
Ext		External data input or output.	L4, L5
(CL PGM	CLEAR PROGRAM	Clear program contents	G5
DELC	DELETE BLOCK	Delete block/"NO" decision	B2, G3
$+$		Actual position value Transfer of actual position value into program memory.	F4,4
	ENTER	Enter into memory/"YES" decision.	B2, B3
[60	GO TO BLOCK	Go to block (block call)	G1
± 1		Paging of program contents forwards or backwards.	G2
		Switching over of universal display between display of block no. and block contents.	F1
stoo	STOP	Programmed stop	F6

Key Symbol	Abbreviation for	Description	Section
(\%)	LABEL SET	Setting program marks (for subroutines or program part repeats) Enter label no. PressLPL SET	F5.1
$\left[\begin{array}{l} \mathrm{LBL} \\ \mathrm{CAOL} \end{array}\right]$	LABEL CALL	Call-up of program marks (jump to a program mark) Enter label no. (and no. of repeats where necessary) Press $\quad \begin{gathered}\mathrm{CAL} \\ \mathrm{CAL} \\ \text {-key }\end{gathered}$	F5. 2
0		Interrupting program run or a positioning procedure	K
©		Starting a program run	H
DEF	L-DEFINITION	Definition of tool length Enter tool no Press DEF - key Enter tool length Press (ENT - key	F2
$\begin{array}{\|l\|} \hline Q_{0}^{\mathrm{EF}} \\ \hline \end{array}$	R-DEFINITION	Definition of tool radius Enter tool no Press $\left[\begin{array}{l}R \\ D F F \\ \hline\end{array}\right.$ Enter tool radius Press (ENT - key	F2
$\left[\begin{array}{c} \text { roal } \\ \mathrm{coll} \end{array}\right]$	TOOL CALL	Tool call Enter tool no Select spindle axis Press - key Press (ENT - key	F3
R+	-	Tool radius compensation "PLUS" Traversing distance is extended by the tool radius	F4,2

Key Symbol	Abbreviation for	Description		Section
n-	-	Tool radius compensation "MINUS" Traversing distance is reduced by the tool radius.	\vdots	

Initial set-up procedure and maintenance

A. A1. List of items supplied \qquad
Technical specifications and dimensions
A2. \qquad
Mounting
A3. \qquad
Directions/safety measures
Connection of linear transducers \qquad
Code switch for display step \& counting direction
Connection of the external start button \qquad
Conversion of mains voltage \qquad
Mains connection \qquad
Changing the buffer battery \qquad
A3. 6 \qquad
Preliminary notes on working with the POSITIP VRZ 965
B. \qquad 12
Brief description \qquad B1. \qquad 12
DEL/ENT decisions \qquad B2.14
Entering numerical values \qquad B3. \qquad 14
Switching on the POSITIP \qquad C. \qquad15
MM/Inch conversionD.
\qquad
Operating mode "ACTUAL VALUE DISPLAY" + f"
E.
E1. 16

Working with ref \qquad E2. \qquad 19
Writing a program \qquad F. \qquad21

Tool definition

F2. 21
Tool definition $\underline{\longrightarrow}$
Tool call $\left.\begin{array}{l}100 a \\ \text { call }\end{array}\right]$
The positioning block $X \mathbb{Y}, Z$ F3.21
Absolute/incremental dimensions I IF4.2526F4.1 26

Entering the Baud Rate L4 : 47
The data-transfer processL5.4849
A. Initial set-up procedure and maintenance
A. 1 List of items supplied

POSITIP VRZ 965 - programmable 3-axis numerical position-display unit
Mains fuse $1,0 \mathrm{~A}$ slow-acting for 100 , 120 , 140 V
0.8 A slow-acting for $200,220,240 \mathrm{~V}$

Mains connector or - if required - mains cable Operating instructions
A. 2 Technical specifications and dimensions

Counter Programmable 3 axis bi-directional counter,
$\mathrm{mm} /$ inch conversion for input values and
displays.
Input resolution: $0.005 \mathrm{~mm} / 0.0002^{\prime \prime}$
or: $0.01 \mathrm{~mm} / 0.0005^{\prime \prime}$
Display step : $0.005 \mathrm{~mm} / 0.0002^{\prime \prime}$
or: $0.01 \mathrm{~mm} / 0.0005^{\prime \prime}$

Displays
Actual value displays for X, Y and Z axes Universal display:
16 symbol alphanumeric display for input values, program blocks and error messages.

Program memory
Buffered semi-conductor memory for $40^{\circ} 0$ program blocks.

Operating modes
: Actual value display:
The POSITIP displays actual position values.
: Positioning with display of remainder of traverse. Positioning blocks may be executed (without storage in the memory) by "traversing to zero".
: Single block program run

```
    The entire program is executed block
    by block
: Automatic program run
The program run is started and the
program is executed until a programmed
STOP or the end of the program is
reached.
```

The following may be programmed

Nominal position values - absolute or incremental dimensioning, tool number, tool length and radius, direction of tool radius compensation, programmed STOP, subroutines (may be nested up to 3 times).
program - part repeats

By inserting and deleting program blocks

Safety checks
The POSITIP checks the functioning of important electronic components as well as the transducers.

Evaluation of reference marks

After a power interruption, automatic reference value transfer by traversing over the transducer reference marks.

Transducers
Incremental HEIDENHAIN linear transducers with grating pitch 0.04 mm , or HEIDENHAIN ROD angle encoders with no pulse-shaping stage.
Maximum traversing $\quad+-19999,995 \mathrm{~mm}$ or 787,4014 inch
distance

A3.2 Connection of linear transducers

The following transducers may be connected to the POSITIP VRZ 965: All LS - linear transducers of the HEIDENHAIN 5041 family with a 40μ grating period $(20 \mu$ grating period for diameter displays) LIDA linear transducers with a 40μ grating period HEIDENHAIN ROD angle encoders with no pulse shaping stage.

Connection is via three 9-pin flanged connectors (HEIDENHAIN Id no. 20071901) on the rear of the POSITIP. The length of the connecting cable must not exceed 20m.

Inputs for linear transducers

Connector layout of the HEIDENHAIN transducer plug Id no 21235601

Contact no.	3	4	1	2	5	6	7	8	9*
	+	-	+	-	+	-	+	-	
Signal name	$\operatorname{lamp} \mathrm{U}_{\mathrm{L}}$		```measuring signal I Iel (0'el.)```		```measuring signal I (900}\textrm{el.}```		ref mark signal $I_{e 0}$		screen 0
Electrical value of signal	$\begin{gathered} 5 \mathrm{~V}+/-10 \% \\ \text { approx. } \\ 20 \mathrm{~mA} \end{gathered}$		$15-35 \mu \mathrm{~A}$ ss		$15-35 \mu \mathrm{~A}$ ss		```4-15\muA effective part```		

* Inner screen connected to pin 9 Outer screen connected to plug casing

A3.3 Code switch for display step and counting direction. The code switch with eight two-way selectors may be found in the box on the rear of the POSITIP. To set the switch, the protective cover on the rear of the POSITIP must be removed.

Altering the display step

counting step 0.005 mm or $0,0002^{\prime \prime}$

counting step 0.01 mm or $0,0005^{\prime \prime}$

Counting direction

HEIDENHAIN linear transducers count in the following direction

If the direction of measurement in one or more axes is found to be incorrect after mounting, then it may be altered on the POSITIP for each individual axis where required.

Positive counting direction

Negative counting direction

Switches 2,3,4 and 5 are inoperative

A3.4 Connection of the external start button

The box on the rear of the POSITIP contains cable terminals for the external start-button, which is operative only in the operating mode 国。

Internal power supply

External power supply

0

$\mathrm{U}=\mathrm{d} . \mathrm{c}$ voltage min. 15 V , max. 30 V
$I=\max .0,017 \mathrm{~A}$

A3.5 Setting the mains voltage

voltage change-over switch with mains fuse-holder

The POSITIP VRZ 965 is set in the works to 220 V ; this may be changed to an operating voltage of $100,120,140,200$ or 240 V .

How to change the mains voltage:

A3.6 Connection of mains supply

Wire the mains cable to the accompanying mains connector

Insert the connector into the socket on the counter and secure with the clip

Ensure that the mains voltage supply is correct; the voltage selected on the unit must match the mains supply voltage (see Sec. A3.5)!
Wiring the mains connector
TAKE NOTE!
Connect mains power to contacts $2 \& 3$
Connect earth to

If this unit is to be powered by a mains supply with a higher voltage via an Autotransformer, then ensure that the case of the transformer is connected to the neutral mains wire.

The mains plug should only be plugged into a socket which is equipped with an earth contact. The effectiveness of the earth protection must not be nullified by the use of an extension cable without an earth conductor

Warning!

Any break in the earth conductor either inside or outside the unit or any fault in the earth conductor connection can lead to the unit becoming dangerous. Deliberate disconnection of the earth conductor is unsafe.

A3.7 Changing the buffer battery

The buffer battery powers the program memory of the POSITIP whenever the mains supply is interrupted or switched off. Batteries must be changed with the mains supply left on, else the contents of the program memory will be lost. If the error message "ERROR O4" is displayed during operation, then new batteries must be inserted within the next 24 hours. If this error message is
displayed immediately the mains supply is switched on, the buffer battery must be changed straight away. The buffer batteries are located in a battery holder behind the front panel. When changing batteries, make sure that the new ones are inserted the correct way round (the polarity symbols are indicated inside the battery holder)!

The three batteries required are typical "mini-cells" of the so callec "leak-proof" type, with IEC-designation "LR5". We especially recommend the use of Mallory alkaline batteries type "MN1500".

Preliminary notes on working with the POSITIP VRZ 965

Brief description
The POSITIP is a programmable digital readout that makes use of the advantages of NC-technology for manually operated machines. If a number of identical workpieces are to be manufactured, the POSITIP leads the machine operator step by step through a previously entered program, in which it displays the remaining path to the next position taking into account tool offsets. The machine operator always has to traverse the machine to "zero" during operation. If working tolerances are to be made use of (i.e. the actual value display contains a number offset from zero after a positioning), then the POSITIP will take this difference into consideration during the next positioning in this axis. In this way there is no build-up of cumulative errors - the differences do not accumulate. The stored operating program consists of "program blocks". There are differe types of program block, as described in this brief outline and in other sections in this operating manual.

The POSITIP VRZ 965 can store up to 400 program blocks in memory. To each individual block that is stored is automatically assigned a block number.

A buffer battery ensures that the program is retained in the memory even when the POSITIP is switched off (e.g. overnight, at weekends,
or when the mains supply is interrupted).
The POSITIP keys are marked with standara symbols or with common abbreviations of English terms. .-A stored program may be executed either in operating mode "Automatic Program Run" (3 key) or in operating mode "Single Step Program Run" (

In this operating mode, each individual block is called up from the program memory by the operator: green key \square. The red key 0 may be used to interrupt or discontinue program execution. Even when only one workpiece is to be manufactured, the machine operator may simplify his job by having the remaining path displayed, allowing for tool length and radius - without the position values being stored (operating mode () .
For the POSITIP to be able to allow for fool dimensions during positioning, the length and radius of the tool being used (or the tool to be used) must first be specified in tool definition blocks:
 and the radius definition each occupy one block. Blocks are further

A positioning block will comprise:

- instruction as to the direction in which tool radius compensation should be applied in this block:

R+ key ... due to the tool radius compensation, the traversing distance is greater than the dimension on the drawing.
R- key ... due to the tool radius compensation, the traversing distance is less than the dimension on the drawing.
or "no compensation required".

There is also the program block "STOP" (500 key), which may be used, for example, to call a tool change to the attention of the operator, or to structure the operating program so that it is easier to read. Finally, when subroutines and program-part repeats are used, there is the facility to set and call up program marks (so called labels) (and $\underset{\substack{\text { LOL } \\ \text { CAL } \\ \text { keys) }}}{ }$

Pressing the ENT key (ENTER key) effects the transfer of entry values into the program memory.
Writing an operating program is not complicated. It may be carried out in several ways:

- either with a stationary machine, directly from a workpiece drawing or program sheet (operating mode θ).
- or with the simultaneous manufacture of the first workpiece -Teach-In - (operating mode 國).
- or with the manufacture of a workpiece merely using the POSITIP as an actual value display, and transfer of display values = actual position values (\dagger key) as nominal position values - Playback.
- the program may be entered externally from some data device via the standard data interface (厥 key).

Using this same interface, it is also possible to have the operating program printed out or stored on punched tape or cassette. As an accessory to the POSITIP, HEIDENHAIN produces a special magnetic tape unit ME101 for such program storage.

The program in the POSITIP memory may be "edited" (i.e. corrected) by either re-entering a program block, inserting additional program blocks, or by deleting individual blocks ($\left[\begin{array}{c}\text { 吡 } \\ \text { key }\end{array}\right.$. The entire program may be deleted using the $\left[\begin{array}{ll}C l \\ \hline G G\end{array}\right.$ key. Any given program block may be called up using the $\left.\begin{array}{c}60 \\ 10 \\ 0\end{array}\right]$ key, and the \downarrow and \dagger keys may be used to page program blocks either forwards or backwards.

Using the N and \square keys, the universal display may be switched to and fro between "Block-number display" and "Display of block contents".
The workpiece datum point may be set in operating mode - D_{m}. It may be reproduced after a power interruption by simply traversing over the transducer reference marks (REF key). The POSITIP permits operation using either metric measurements or measurements in inches (NOW key).

B2. DEL/ENT Decisions

protected from being pressed unintentionally by the DEL/ENT request. When any of these keys is pressed, proceed as follows:

One of the keys in question has been pressed

B3. Entering numerical values

Numerical values may be entered as follows:

Values that have been entered incorrectly may be deleted using the CE key.

Entering position values

When values are entered in "mm" mode, entry is in steps of either $0,01 \mathrm{~mm}$ or $0,005 \mathrm{~mm}$. If the least significant digit is other than or 5, then the POSITIP will round the entered value either up or down as appropriate. When values are entered in "inch" mode, entry is in steps of either 0,0002" or 0,0005". If the least significant digit is an odd number, then the entered value will be rounded either up or down as before.
C. Switching on the POSITIP

The POSITIP is switched on either via the power supply switch at the rear, or via the main switch on the machine.
The actual value displays will immediately be set to specific values (the REF values, see section E2); all display lamps are illuminated.

D. mm/inch conversion

The POSITIP may also be programmed with dimensions in inches (WCH key). The switch-over from mm to inch mode must take place before the operating program is entered. The conversion function is protected from unintentional operation by the DEL/ENT request.

- The "inch" operating mode may be converted back to "mm" mode simply by pressing the NCH and EN
E. Operating mode "ACTUAL VALUE DISPLAY"

In this operating mode, the POSITIP will display the actual position values in each of the three axes relative to the workpiece datum point.

When a workpiece is machined, the values displayed in the POSITIP must correspond to workpiece positions; in setting datum points, the three actual value displays are preset to given values in relation to the workpiece (specific numbers are set into the displays, giving each machine axis a defined position).

For example, if the dimensions in the following sketch are relative to the lower left hand corner of the workpiece, then that corner becomes the workpiece datum point and is assigned display value 0 in the X and Y axes.

To do this, either
a) locate the workpiece datum point, e.g. with an optical edge finder and then set the X and Y displays to zero.
b) locate known position A, e.g. with a centring device, and then set the X axis to 50 and the Y axis to 40.
or

c) the workpiece datum point may be set by scratching the workpiece surface. Using a tool (or a mechanical edge finder) with a diameter of 10 mm , first touch the left hand edge of the workpiece and set the $X-d i s p l a y$ to -5 , then touch the bottom edge of the workpiece and set the of setting the axes is similar to method b) (except that -5 is entered instead of 50 and 40).

In our example, Z is the spindle axis. The workpiece datum point for the Z axis may be set in various ways, depending on the tool that is used.
a) Tools in Toolholders (with or without longitudinal stop)

To set the workpiece datum point for the spindle axis, insert the first tool ('zero tool', see section F2, "tool definition"). If, for example, the upper surface of the workpiece is to be assigned datum value 0 , then scratch the workpiece surface with the tool and set the Z-axis display to 0 with the tool in this position. (Corresponds to case (a) for axes X and Y). If the upper surface of the
 workpiece is to be assigned a value other than 0 , then the actual value counter for the spindle axis should be set to the position that the upper surface is to assume. e.g. +50
b) Preset tools

The lengths of preset tools are already known. Scratch the surface of the workpiece with any tool. If the surface of the workpiece is to be assigned the value 0 , then the actual value counter for the spindle axis must be set to the length +Ll of the corresponding tool. If the upper surface is to be assigned a value other than zero, then the actual value counter for the spindle axis must be set as follows:

(Actual value $Z)=($ tool length LI) + (position of upper surface)

Example:
Tool length 100 mm , position of workpiece surface to be $Z=+50 \mathrm{~mm}$ Actual value $\mathrm{Z}=100 \mathrm{~mm}+50 \mathrm{~mm}=150 \mathrm{~mm}$.

Datum points may be set as follows:

Should the relationship that is established between positions and display values when the datum point is fixed need to be reproduced, then the reference points must be traversed before the datum point is set. (see following section E2.)

E2. Working with ref

The relationship that is established between positions and display values when a datum point is fixed will be lost when the POSITIP is switched off or if the power supply is interrupted. It may however
be easily reproduced. The linear transducers in all machine axes have reference marks (special impulse on the scales) for just this purpose. When traversed, these reference marks output a signal which is evaluated by the POSITIP.

The position of the reference mark in each axis is called the reference point. When the datum point is set, the reference points are also assigned specific position values, which we have named "REF-values".
Whenever datum points are set, the POSITIP will only store these REFvalues automatically if the reference marks have been traversed at some point between the time when the POSITIP is switched on and the time when the datum points are set ($\sqrt{\text { eFF }}$ - switched on).

After a power interruption (the POSITIP will have been switched off and then switched back on), these REF-values will be displayed in the "actual value display"; if the $R \in F$ key is pressed, the individual axes will only start to count when the reference points have been traversed, so that the position values displayed (actual values) will relate to the most recently established datum point.

Next to the figures in the actual value displays are reference-markposition value display lamps, which we have named "REF lamps" for short. If the REF lamp in one axis is illuminated, then it is indicating that counting was stopped and that the "REF-value" is being displayed.

In general, the reference marks should be traversed straight away whenever the POSITIP is switched on (after the REF and Neys have been pressed).

- either to reproduce the previous datum point
- or to store new "REF-values" by establishing a new datum point:

The kef key should be left switched on: the illumination of the [eF key control lamp indicates that the reference marks have been traversed and that the "REF-values" have been or are being stored in memory.

If an axis cannot be traversed over a reference mark (due to the danger of collision between the tool and workpiece), the "REF" may be switched off by pressing the REF and ENT keys again.
F. Writing Programs

F1. Block No./Block Contents Switchover $N \square$

The universal display can show either the contents of a program block or its number as required.

If the \square key is pressed: the contents of program blocks are displayed.

If the N key is pressed: program block numbers are displayed.

总
Even when the POSITIP has been switched so that the contents of program blocks are displayed, block numbers are displayed whenever on

F2. Tool Definition

The POSITIP allows for tool compensation, so when a program is enterer the workpiece contours may be programed directly from the drawing.

The storage of the values required for this compensation takes place
during the definitions of the tool length and radius.
Length and radius compensation values may be entered for up to 15 tools.
If a tool is reground, or it breaks and has to be replaced, then only the corresponding length and radius definitions need be altered.

A tool is defined by entering values according to the following sequence:

1. Tool number (1...15)

2. Enter the compensation value
3. Press the ENT key

Operating mode	Press	Universal Display/Remarks
θ	\square	Display of block contents
	$0 \ldots 9$	Enter tool no.
	DEF or ${ }_{\text {D }}^{\text {D }}$ D	Indicator lamp for $\left[\begin{array}{l}R \\ D \in F\end{array}\right.$ or $\left[\begin{array}{l}R \\ 0 \in F\end{array}\right.$ is illuminated
	0 ... 9	Enter compensation value
	(ENT)	Block is stored in memory e.g. LDEF $12+100,000$

A tool may not be defined as no. 0 : this tool number has been set aside for "no tool" i.e. $L=0$ and $R=0$.
Tool definition blocks are displayed as follows in the universal display:

If a tool number has been entered incorrectly, and the L and R values have already been entered beneath it, then three asterisks will appea. in the universal display in place of the letters "DEF".

When this happens:
Press the $\sum_{D \in F}^{L}$ key again and enter a new tool number!
a) Clamped tools without longitudinal stop.

The datum point for the spindle axis must first be established (see section E 1) by scratching the upper surface of the workpiece with the first tool and setting the actual value display in the corresponding axis. (e.g. z-axis). The first tool is defined as the zerotool, i.e. the following is entered in the tool definition block for the first tool: e.g. tool length $\mathrm{L}=0,000$

For all subsequent tools (and also whenever tool no. 1 is reinserted), the difference in length between the new tool and the first tool must be entered. In the case where the upper surface of the workpiece has been assigned the position $Z=0$, the length compensation value may be ascertained when a new tool is inserted by scratching the upper surface of the workpiece. The compensation value is displayed in the actual value display for the Z-axis, and may be transferred as the entry value (including the arithmetic sign where necessary) using

+ key. This value will be entered in the tool definition block for the corresponding tool. e.g. tool length $\mathrm{L}=40,000$

If the upper surface of the workpiece has been assigned a value other than zero, then the tool length may be ascertained after the datum point has been set as follows:

Scratch the workpiece surface and note down the value (including arithmetic sign) in the actual value display for the spindle axis. The compensation value L may be calculated from the following equation:

```
Compensation value L = (actual value Z) - (position of workpiece
                                    surface)
```

Example:
Actual value in Z-axis display $=+42$
Position of workpiece surface $=+50$
Compensation value $L=(+42)-(+50)=-8$

This value is entered in the appropriate tool definition block:

Tool length $\mathrm{L}=-8$

b) Tools in Toolholders with longitudinal stop

The tool length compensation value is determined as described in a). Once a compensation value has been fixed it does not alter even if the tool is removed and then reinserted.
c) Preset tools

The lengths of preset tools have already been determined on a presetting device i.e. all tool lengths are already known and needn't be determined on the machine. Tool lengths entered in tool definition blocks are those determined on the presetting device.

F3. Tool-call

When a tool is changed, the data (length and radius) for the new tool must be called up using the troal key.

A "Stop" must be programmed with the srop key before each tool change so that execution of the program is interrupted and the tool may be changed.

Operating mode	Press	Universal Display/Remarks
$\hat{\nu}$	\square	Display of block contents
	$0 . .9$	Enter tool no. 0... 15
	$X \quad Y \quad Z$	Selection of spindle axis; tool length is parallel to this axis; radius compensation may be programmed in the other two axes as required.
	[Press the tool-call key
	(ENT)	The tool call is stored. The universal display shows e.g. TOOL CALL 8 Z

If the machine is to be traversed without compensation after a toolcall, then a tool-call with number 0 must be programmed and executed using the external start button (tool no. 0 has been preprogrammed by the works with length $L=0$ and radius $R=0$).

F4. The Positioning Block X, Z
F4.1 Absolute/Incremental Dimensioning I

Workpiece dimensions are either absolute or incremental. The difference is explained in the examples below:

Absolute Dimensions

The tool is in position $\mathrm{Xl}=10 \mathrm{~mm}$ The machine axis is to be traversed to position $\mathrm{x} 2=40 \mathrm{~mm}$ Both dimensions are relative to the (absolute) workpiece datum point (marked by $-\phi$).

Incremental Dimensions

The tool is in position Xl . The machine axis is to be traversed by 30 mm to position X2. With incremental dimensions, the path to be traversed is not relative to the workpiece datum point, but is instead relative to the position that was reached after the last positioning.

Programming in absolute dimensions has the advantage of allowing geometric amendments to individual positions without the remaining positions being affected. Reentry into the interrupted program after
a power failure or other defect is simpler with absolute programming (All that is required is that the datum point be reproduced as in section E3.) Furthermore, suitable location of the workpiece datum point can help to dispense with negative values.

On the other hand, incremental programming eliminates calculation wo in many cases.

To program in incremental mode, press the I key. (I = incremental (the corresponding lamp is illuminated). If the key is pressed again absolute mode is reselected (the corresponding lamp goes out). If a block has been programmed in the wrong mode, then it must be deleted using the $\begin{gathered}D E L \\ 0\end{gathered}$ key and the correct block must be reentered.

F4. 2 Tool radius compensation $R+R-$

It is only necessary to determine in the positioning block whether the traversing distance is to be increased or decreased by the radius compensation (the size of the radius compensation is entered in the tool definition block with the $\int_{0 \in F}^{R}$ key - see section F2). Compensation is selected by pressing either the $[\mathrm{R}+$ or the $\mathrm{R}-$ key - the corresponding lamp is illuminated.
The $R+$ and $R-$ keys have the following meanings:
If $R+$ is programmed, then the traversing distance is increased by the size of the tool radius
e.g. exterior contour

If R^{-}is programmed, then the traversing distance is reduced by the size of the tool radius. e.g. interior contour.

F4.3 Programming a positioning block from a program sheet or drawing

The various entries (block parts, or words) to a positioning block may be selected and entered in any order. To display the contents of program blocks: press the \square key.

Entries	Example	
Axis to be traversed: Press X, Y or Z	X-axis : X	
Absolute or incremental dimensions: absolute dimensions... I off Incremental dimensions... I on	Absolute dimensions	
Nominal position value: $0, \ldots 9$ and $+/$	$22,5 \mathrm{~mm}$	
Tool radius compensation: either \quad R on (traversing distance>dimension on drawing) or R on (traversing distance<dimension on drawing) -or $R+$ and R - off (no radius compensation)	R+	
Store in memory: Press the key	Press Ent	

F4.4 Programming a positioning block using the "Actual value transfer" key (Playback) +

If more than one workpiece is to be machined, it can be advantageous to program the POSITIP simultaneously with the machining of the first workpiece. The POSITIP is then used as an actual position value display and the positions to which the machine has been traversed are transferred to the universal display using the "actual value transfer" key.

Programming a positioning block using the 'actual value transfer' key is only meaningful in absolute mode. (I key switched off)

Operating mode	Press	Universal Display/Remarks
ω	\square	Display of block contents
	-	Position machine axis
	$X \square$	Select the required axis with the axis-selection key.
	$+$	Transfer the actual position value to the universal display.
	$\begin{array}{ll} \mathrm{R}+ \\ \hline \end{array}$	If radius compensation is required, press key indicating direction of compensation.
	(EN)	Store block in memory $\text { e.g. } \quad A x+231,365 R+$

The positioning block selected in the above example would be displayed in the universal display as follows:

Examples:
Y-axis
Incremental dimension $-82,75 \mathrm{~mm}$
Radius compensation R-

z-axis
Absolute dimension 200 mm
No radius compensation

When a positioning block is programmed, the nominal position value ma: also be transferred from the actual value display (instead of enterinc the value, press the $+\quad$ key, see section F 4.4).

The actual position value that is transferred takes into account the length and radius compensation for the tool that is being used.

䨘
Values Ll=0 and Rl=0 must be entered in the tool definition blo for this tool, and the radius $R 1$ of the tool used should be not down. Positioning blocks that are programmed in "Playback" mode must be entered with the correct radius compensation: R+, R-, R

If a tool eventually breaks and is replaced by a new tool with a different radius, then proceed as follows:

Radius compensation value $=\mathrm{R} 2-\mathrm{R} 1$

This radius compensation value may be either positive or negative an must be entered for R1 (including any minus sign) in the tool radius definition.

The length compensation value must also be re-entered.

F4.5 Programming a positioning block with the simultaneous machining of the first workpiece (Teach-In)....

When programs are entered in "Teach-In" mode, the program blocks are executed block by block in operating mode "Positioning with display of remainder of traverse" and then transferred immediately to the program memory.

Operating mode	Press	Universal Display/Remarks
		POsITIP in operating mode "Positioning with display of remainder of traverse".

Program marks (label nos.) for the identification of subroutines or program part repents may be set at any desired location in the program. These marks serve as jump addresses.

A jump command to a label no. will always reach the correct location in the program even after the program has been edited (insertion and deletion of blocks). Numbers 1 to 99 may be used as label nos. Label no. 0 is always used as a program mark "End of Subroutine". Each program mark and each jump command occupies one program block.

Schematic diagram of a subroutine:

The beginning of the subroutine is marked by a label (egg. label 3)

The end of the subroutine is marked by label 0 .

A subroutine may be called at any point in the main program using the subroutine call feature i.e. a jump is made to the appropriate program label.

Note: A subroutine can only be executed once when it is called.

Description of program run:

1. The main program is executed up to the subroutine call.
2. A jump is then made backwards to the label called.
3. The subroutine is executed to its end (label 0).
4. Return to the next block after the subroutine call.
5. Normal program execution is continued.

Nesting of subroutines

Subroutines may be nested up to 3 .times i.e. up to 3 different subroutines may be interconnected by jump commands within the individual subroutines. Subroutines may also contain program part repeats. If subroutines are nested more than 3 times, then "ERROR 45' will be shown in the display.

Schematic Diagram of a Subroutine Nesting

Schematic Diagram of a Program Part Repeat

The beginning of the program part to be repeated is marked by a program label (e.g. LBL 5)

For a program part repeat, the no. of repeats is entered after the program label. The maximum no. of repeats

Main Program

LBL 5

Part of program to be repeated

CALL LBL $52 / 2$

Main Program

1. The operating program is executed up to the Program Part Repeat Call. Two repeats are programmed in the "CALL-LBL" block.
2. The jump back to the label that has been called now proceeds.
3. The Program Part is repeated. In the event of a "Label 0 " being in the repeated part of the program, it is ignored. CALL LBL $52 / 1$ appears in the data display.
4. Repeated jump back to the program mark.
5. After the second repeat, the block CALL LBL $52 / 0$ appears in the data display. All programmed repeats have been executed, the normal program run continues.

Schematic Diagram of a Multiple Subroutine Repeat

Should repeats of a subroutine be required, then they should be programmed as follows:

Program mark defining the subroutine
Program mark defining the "End of Subroutine" Main Program Program mark defining the Program Part Repeat Subroutine-Call Lubroutine Program Part Repeat for two repeats of the Subroutine-Call
Main Program

If two repeats are programmed, the subroutine will be executed three times.

Description of the Program Run

1. The main program is executed up to the Subroutine Call.
2. Jump backwards to the label that has been called.
3. Execution of the subroutine.
4. Jump to the block located after the Subroutine Call.
5. Jump back to the program label for the Program Part Repeat.
6. The Subroutine Call appears in the Program Part Repeat.
7. Jump back to the label that has been called.
8. Execution of the subroutine.
9. Jump to the block located after the Subroutine Call.
10. The cycle is repeated until all Program Part Repeats and consequently all Subroutine Calls have been executed.

F5.1 Setting a label no. (program mark)

Operating mode	Press	Universal Display/Remarks
θ	0	Display of block contents
	$0 \ldots 9$	Enter the label no. in the data display: permissable values 0-99
	[The program mark is stored in memory e.g. \square LBL 3

F5. 2 Jump to a label no. (program mark)

Operating mode	Press	Universal Display/Remarks
θ	\square	Display of block contents
	$0 \ldots 9$	a) For subroutines - enter label no. Permissable values: 1-99 b) For program part repeats - enter label no. and no. of repeatsXX, XX Label no. $\begin{array}{l}\text { No. of repeats } \\ 1-99\end{array}$ $\begin{array}{l}1-99\end{array}$
	$\begin{gathered} \hline 18 \mathrm{~L} \\ \mathrm{CALLL} \\ \hline \end{gathered}$	The block is stored in memory. e.g. CALL LBL 62'33/33

F6. Programmed Stop: srop key

A programmed 'Stop' will interrupt the program run. It may be programmed as follows:

Operating mode	Press	Universal Display/Remarks
	\square	Display of block contents
θ	STOP	STOP The STOP block has been programmed, the key need not be pressed again.

G. Program Editing

G1. Calling up a specific program block

G2. Step by step checking of program blocks

$$
\text { Select operating mode } \theta, \forall \text { or } \theta
$$

Select the no. of the block from which the program is to be checked

Page the program either forwards or backwards using the paging keys

G3. Deleting a program block

Select operating mode

Select the no. of the block to be deleted, or the no. of the last block in the part of the program to be deleted

G4. Inserting a program block into an existing program

With the POSITIP, new program blocks may be inserted into an existing program at any random location. Simply select the block after which the new block is to be inserted: the new block is then simply entered: the block numbers of the subsequent blocks are automatically amended. If the storage capacity of the memory is exceeded, then the error message "ERROR 09" will be shown in the universal display.

G5. Deleting a program

H. Single-block and Automatic program run

Programs may be executed in operating modes "Single block program run and "Automatic program run" \exists. After the start of the program run, the paths to be traversed (remainder of traverse) are shown in the actual value displays. The displayed values will include any tool compensation that might have been programmed.

Example:
The following has been programmed in the tool definition:

LDEF	$1+100,000$
RDEF	$1+20,000$

A tool call must be programmed so that the compensation values can be taken into consideration:

TOOL CALL 1 Z
The first positioning block programmed reads:

```
A X + 30,000 R +
```

Assumption:
At the start of the operating program the tool is at the datum point, i.e. $X=0, Y=0, Z=0$

The program is started in operating mode \exists or \because the remainde of the traverse is shown in the actual value display for the X -axis:
$X=-50,000$

The displayed value for the remainder of the traverse is obtained as follows:

The tool must be traversed to the corrected nominal position value. The corrected nominal position value is obtained by combining the programmed nominal value with the radius compensation value.

In our example:
programmed nominal value $30 \mathrm{~mm}+$ radius compensation $20 \mathrm{~mm}=$ corrected nominal position value 50 mm .

The POSITIP sets the "remainder of traverse" display to -50 so that the actual value of the position to which the machine is to be traversed is $0:$ the positioning block is executed by traversing the tool to zero.

Flow diagram for Single block- and Automatic- program run

If your machine is equipped with an external start button, then program run in operating mode "Single block program run" Gr may also be started using this button.
I. Operating mode "Positioning with display of remainder of traverse" Ex

In this operating mode, positioning blocks may be executed without being stored in memory by "traversing to zero".

If tool radius compensation is to be taken into account in operating
mode＂Positioning with display of remainder of traverse＂国 then the following should be noted：
－program the tool definition and tool－call in operating mode ＂Program entry＂． \square
－start the tool－call in operating mode＂Single block program run＂国 using the（9）key．
－enter the positioning block in operating mode＂Positioning with display of remainder of traverse＂国．The tool radius and tool length are automatically taken into account when the remainder of the traverse is determined．

K．Interrupting a positioning process

If necessary，a positioning process may be interrupted by pressing the 0 key．

The POSITIP has been started in one of the operating modes 国 ，国 or $\boldsymbol{\theta}$ ： The control lamp in the universal display is illuminated．

The positioning process is to be interrupted． Press the 0 key－the control lamp in the universal display goes out and the positioning process is interrupted．

[^0]L. External data-input and -output

Ll. Interface

The POSITIP VRZ 965 has a CCITT-type V. 24 interface (EIA standard RS-232-C).
This data-input/output facilitates the connection of the HEIDENHAIN ME 101 magnetic tape unit (portable unit).

Other programming or peripheral devices (e.g. tape punch, tape reader, teletype printer) may also be connected to the POSITIP if they have a V. 24 compatible connection. (Peripheral devices with a 20 mA interface may not be connected).

L2. The HEIDENHAIN magnetic tape unit ME 101

HEIDENHAIN produce a special magnetic tape unit for the external storage of data:

The ME 101, a portable device for alternate use on several machines.

The ME 101 magnetic tape unit is equipped with two data-input/output connections.

A typical peripheral device may also be connected to the V. 24 (RS-232-C) output of the ME (connection PRT) as well as to the POSITIP.

The data transfer rate between the POSITIP and the ME has been set to 2400 Baud. The transfer rate between the $M E$ and the peripheral device may be adjusted as required using a selector switch $(110,150,300$, 600 , 1200, 2400 Baud).
More detailed information on using the magnetic tape unit may be found in the ME 101 operating instructions.

ME 101

L3. Interconnecting cable

HEIDENHAIN supply the following cable for connecting the ME 101 directly to the POSITIP:

The following connector layout is suitable for the connection of a typical peripheral device (e.g. printer with tape reader/punch) to the ME 101.

L4. Entering the Baud Rate

The transfer rate for the POSITIP V. 24 interface has been set to 2400 Baud, suitable for the HEIDENHAIN magnetic tape unit ME 101.

If a peripheral device with a different Baud Rate is to be connected to the POSITIP (not via the ME), then the Baud Rate may be altered as follows:

If the Baud Rate is merely to be displayed, then the display should be cleared using the $\begin{gathered}0 \text { El } \\ \square\end{gathered}$ key after the $\hat{E x}$, key has been pressed.

If the POSITIP is switched off without buffer batteries, or if the buffer batteries are discharged when the POSITIP is switched off, then the programmed transfer rate is deleted and will automatically be set to 2400 Baud when the POSITIP is switched back on.
5. The data-transfer process

Output of data to printer, tape punch, or magnetic tape unit ME 101 . The POSITIP will issue the following commands automatically (for line by line printout):

CR - carriage return
LF - line feed
SP - space
ETX - end of text

When programs are stored using a tape punch, the punched tape will contain these symbols; when programs are stored in the ME 101, they are present on the magnetic tape:-

Starting the data output

External input of an operating program

Before entering the program into the FOSITIP, clear the program memory; during external input, the program blocks are overwritten by the new information, and if the memory has not been cleared it is possible that small parts of the "old" program will remain in the memory.

M. Example programs

Programming example 1

Workpiece with holes
Tool: drill diameter 4 mm

Material: Steel St 37
Thickness of workpiece: 20 mm

Dimensions in (mm)

Datum point:

$$
X=0, Y=0 . Z=0
$$

'perating program			Remarks	
Block no.	Block contents			
$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	LBL 1 AZ $+100,000$ AX $-20,000$ AY $+20,000$ LBL O	$\begin{aligned} & \text { RO } \\ & \text { RO } \\ & \text { RO } \end{aligned}$	Definition of tool change Fosition as a subroutine	
$\begin{aligned} & 006 \\ & 007 \end{aligned}$	$\begin{aligned} & \text { LDEF } 1 \\ & \text { RDEF } 1 \end{aligned}+\frac{\ldots}{2.000}$		Tool definition *	
008	STOP			
009	TOOL CALL 1 Z		Tool call	(v)

Operating program				Remarks'
Block no.	Block contents			
. 010	AX	+ 100,000	RO	Positioning commands and return
011	AY	- 20,000	RO	to tool-change position
012	AX	+ 2,000	R0	
013	$A Z$	- 25,000	RO	
014	AZ	+ 2,000	RO	
015	IX	+ 140,000	RO	2. $-\operatorname{sotz-ax}$
016	AZ	- 25,000	RO	$\cdots{ }^{-\infty}$
017	AZ	+ 2,000	RO	(1) $\phi^{12} \rightarrow \rightarrow-5$
018	IY	- 140,000	R0	- - - $-\frac{8}{8}$
019	AZ	- 25,000	R0	
020	$A Z$	+ 2,000	R0	
J21	IX	- 140,000	RO	
022	AZ	- 25,000	RO	
023	AZ	+ 2,000	RO	
024	CAL	$1^{\prime} 0 / 0$		

* For calculation of the compensation value for tool length L : see section F2 "tool definition".

Programming example 2

Workpiece with holes
Tool 1: drill diameter 4mm
Tool 2: drill diameter 12 mm

Material: Steel St 37
Thickness of workpiece: 20 mm

Datum point: $X=0, Y=0, Z=0$

perating program			Remarks	
Block no.	Block contents			
$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	LBL 0 AZ $+100,000$ AX $-20,000$ AY $+20,000$ LBL 0	$\begin{aligned} & \text { RO } \\ & \text { RO } \\ & \text { RO } \end{aligned}$	Definition of tool change position as subroutine 1	
$\begin{aligned} & 006 \\ & 007 \\ & 008 \\ & 009 \end{aligned}$	LDEF 1 \ldots RDEF 1 + 2,000 LDEF 2 \ldots RDEF 2 + 6,000		Tool definitions	
010	STOP			
011	TOOL CALL 12		Tool call 1	

Programming example 3

Workpiece with hole matrices Repetition of positioning commands using a subroutine

Tool: drill diameter 4mm

Material: Steel St 37
Thickness of workpiece: 20 mm

Datum point:

Programming example 4

Workpiece with holes. Repetition of a positioning command using program-part repeats Tool: drill diameter 4 mm

Material: Steel St 37
Thickness of workpiece: 20 mm

Dimensions in (mm)

Datum point: $X=0, Y=0, Z=0$

Operating program			Remarks
Block no.	Block contents		
$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	LBL 1 AZ $+100,000$ AX $-20,000$ AY $+20,000$ LBL 0	$\begin{aligned} & \text { RO } \\ & \text { RO } \\ & \text { RO } \end{aligned}$	Definition of tool change position as a subroutine
$\begin{aligned} & 006 \\ & 007 \end{aligned}$	$\begin{aligned} & \text { LDEF } 1 \\ & \text { RDEF } 1+\ldots \\ & 2,000 \end{aligned}$		
008	STOP		
009	TOOL CALL 12		Tool call
> 010 011 012 013 014 015 016 017 018 019 020	AX $+10,000$ AY $-20,000$ AZ $+2,000$ LBL 2 AZ $-25,000$ AZ $+2,000$ IX $+10,000$ CALL LBL $2 \mathrm{C} 3 / 3$ AZ $-25,000$ AZ $+2,000$ CALL LBL 1• $0 / 0$	$\begin{aligned} & \text { RO } \\ & \text { RO } \end{aligned}$	Positioning commands and call-ups of program-part repeats. Return to tool-change position

Programming example 5

Workpiece with holes Repetition of positioning commands using program-part repeats within a subroutine. Tool: drill diameter 4mm

Material: Steel St 37
Thickness of workpiece: 20 mm

Datum point: $X=0, Y=0 . Z=0$

Operating program			Remarks
Block no.	Block contents		
$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	LBL 1 AZ $+100,000$ AX $-20,000$ AY $+20,000$ LBL O	$\begin{aligned} & \text { RO } \\ & \text { RO } \\ & \text { RO } \end{aligned}$	Definition of tool-change position as subroutine 1
$\begin{aligned} & 006 \\ & 007 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { LDEF } 1 \\ \text { RDEF } 1 \end{array}+\cdots$		Tool definition
008	STOP		
009	TOOL CALL 12		Tool call

Operating program			Remarks
Block no.	Block contents		
010	AX $+25,000$	RO	Positioning commands and
011	AY - 15,000	RO	repetition of a series of holes
012	$A Z+2,000$	RO	
013	LBL 2 - 0		using a program-part repeat
014	AZ - 25,000	R0	within subroutine 2.
015	AZ + 2,000	RO	Return to tool-change position
016	1 X + $+20,000$	RO	
017	CALL LBL-2' $2 / 2$		
018	AZ - 25,000	RO	
019	$A Z+2,000$	RO	-
020	LBL 0		
J21	$\mathrm{AX}+30,000$	RO	
022	$A Y \quad-45,000$	RO	$\Phi \rightarrow T \rightarrow T \rightarrow T$
024	CALL LBL $1^{\prime} 0 / 0$		-

Programming example 6

Workpiece with hole matrix Positioning of matrix holes using program-part repeats within a subroutine.

Tool: drill diameter 4 mm

Material: Steel St 37
Thickness of workpiece: 20 mm

Dimensions in (mm)

Datum point: $X=0, Y=0, Z=0$

Block no.	Block contents.		Remarks
$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	LBL 1 AZ $+100,000$ AX $-20,000$ AY $+20,000$ LBL 0	$\begin{aligned} & \text { RO } \\ & \text { RO } \\ & \text { RO } \end{aligned}$	Definition of tool-change nosition as subroutine 1
$\begin{aligned} & 006 \\ & 007 \end{aligned}$	$\begin{aligned} & \text { LDEF } 1 \\ & \text { RDEF } 1+\ldots \\ & 2,000 \end{aligned}$		Tool definition
008	STOP		
009	TOOL CALL 12		Tool call

| Operating program | | |
| :--- | :--- | :--- | :--- | :--- |
| Block no. | Block contents | |

Programming example 7

Milling operation
Tool 1: Milling cutter diameter 20 mm
Tool 2: Milling cutter diameter 10 mm

Material: Steel St 37

Uperating program

Block no.	Block contents	Remarks
$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & 004 \\ & 005 \end{aligned}$	LBL 1 AZ $+100,000$ RO AX $-20,000$ RO AY $+20,000$ RO LBL 0	Definition of tool-change position as a subroutine
$\begin{aligned} & 006 \\ & 007 \\ & 008 \\ & 009 \end{aligned}$	LDEF \ldots RDEF 1 $+10,000$ LEEF 2 RDEF $+5,000$	Tool definition
010	STOP	
011	TOOL CALL 12	Tool call

Operating program			Remarks
Block no.	Block contents		
012 013 014 015 016 017 018 019 020		R- R- RO RO R+ R+ R+ R+	Positioning commands for milling of outer frame. Return to tool-change position
021	STOP		Stop for tool-change
$\begin{aligned} & 022 \\ & 023 \\ & 024 \\ & 025 \\ & 026 \\ & 027 \\ & 028 \\ & 029 \\ & 030 \\ & 031 \end{aligned}$	 TOOL CALL $2 Z$ AX $+15,000$ AY $-15,000$ AZ $+2,000$ AZ $-10,000$ AX $+60,000$ AY $-35,000$ AY $+15,000$ AY $-15,000$ CALL LBL $10 / 0$.	$\begin{gathered} \mathrm{R}+ \\ \mathrm{R}+ \\ \mathrm{RO} \\ \mathrm{RO} \\ \mathrm{R}- \\ \mathrm{R}- \\ \mathrm{R}- \\ \mathrm{R}- \end{gathered}$	Tool call 2 Pnsitioning commands for milling of pocket. Return to tool-change position.

Programming example 8

Milled workpiece with large open slots, elongated hole and threaded hole.

Tool no.	Tool
1	Three-lip milling cutter diameter 10 mm
2	Rough/Finishing cutter diameter 10 mm
3	Three-lip milling cutter diameter 8 mm
4	Rough/Finishing cutter diameter 8 mm
5	NC-centering tool diameter 10 mm
6	Drill diameter 2.4mm

M3 threads throughout
Datum point: $\phi X=0, Y=0, Z=0$ +Z above workpiece

Material: Cast aluminium
Thickness of workpiece: 6 mm

Operating program			Remarks
Block no.	Block contents		
006 007 008 009 010 011 012 013 014 015 016 017			Tool definition
018	STOP		
019	TOOL CALL 12		Tool call 1
$\begin{aligned} & 020 \\ & 021 \\ & 022 \\ & 023 \\ & 024 \\ & 025 \\ & 026 \\ & 027 \end{aligned}$	$A X$ $+25,000$ $A Y$ $-15,000$ $A Z$ + 2,000 $A Z$ - 6,500 $A Z$ -6000 $A Y$ -6000 $A Z$ 6,500 $C A L L ~ L B L$ 100	R+ R+ RO RO 'R0 R+ RO	Positioning commands for double plunge cut of three-lip milling cutter (open slot). Return to tool-change position.
028	STOP		
029	TOOL CALL 2 Z		Tool call 2 Spindle speed for tool 2

| Operating program | | |
| :--- | :--- | :--- | :--- |
| Block no. | Block contents | |

Operating program			Remarks
Block no.	Block contents		
058	STOP		
059	TOOL CALL 5Z		Tool call 5 Spinale speed for tool 5
$\begin{array}{r} 060 \\ 061 \\ \Omega_{2} \\ 3 \\ 064 \end{array}$	LBL 4 AX $+19,000$ AY $-20,000$ AZ $+2,000$ LBL 0	$\begin{aligned} & \text { RO } \\ & \text { RO } \\ & \text { RO } \end{aligned}$	Positioning commands for traversing to the first threaded hole are programmed as subroutine 4.
$\begin{aligned} & 065 \\ & 066 \\ & 067 \\ & 068 \\ & 069 \\ & 070 \\ & 071 \\ & 072 \end{aligned}$	LBL 5 AZ - 2,250 AZ + 2,000 I - 15,000 AZ - 2,250 AZ $+2,000$ LBL O CALL LBL $10 / 0$	$\begin{aligned} & \text { RO } \\ & \text { RO } \end{aligned}$	Positioning commands for centering the threaded holes are programmed as subroutine 5. Re+urn to tool-change position.
073	STOP		
074	TOOL CALL 62		Tool call 6 Spindle speed for tool 6
075	CALL LBL 5' 0/0		Positioning for the first threaded hole.
076	LBL 6		Positioning commands for tap
077	AZ - 7,000	RO	drilling the threaded holes are
078	AZ + 2,000	R0	programmed as subroutine 6 .
079	IY - 15,000	R0	
080	AZ - 7,000	R0	Return to tool change position.
081	AZ + 2,000	RO	
082	LBL 0		
083	CALL LBL 1'0/0		

VRZ 965 Programming Sheet

Block no.	Block contents			-			Remarks
		$\begin{aligned} & N \\ & \underset{\sim}{\prime} \\ & \times \\ & \underset{x}{x} \end{aligned}$					
1			LBL 1				
2	A	z		+ 100,000	R0		
3	A	x		- 20,000	R0		
4	A	Y		+ 20,000	R0		
5			LBL 0				
- 6			LDEF 1	0,000			
7			RDEF 1	2,000			
8			STOP				
9			TOOL CALL 1			2	
10	A	x		$+100,000$	R0		
11	A	Y		- 20,000	R0		
12	A	2		+ 2,000	R0		
13	A	Z		- 25,000	R0		
14	A	Z		+ 2,000	R0		
15	I	X		+ 140,000	R0		
16	A	2		- 25,000	R0		
17	A	2		+ 2,000	R0		
18	I	Y		- 140,000	R0		
- 19	A	2		- 25,000	R0		
20	A	Z		+ 2,000	R0		
21	I	Z		- 140,000	R0		
22	A	2		- 25,000	R0		
23	A	Z		+ 2,000	R0		
24			CALL LBL1 0/0				
25							
26							
27							
28							

VRZ 965 Programming Sheet

Block no.	Block contents			...			Remarks	
					$\begin{array}{r} n \\ \substack{0 \\ .0 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & n \\ & \vec{x} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & .0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								

Automatic Error Diagnostics

The POSITIP is equipped with its own error diagnostics for operating errors and hardware faults. Errors are indicated in the universal display by "ERROR ..." using a two-digit error code. While an error message is being displayed the POSITIP is inhibited, i.e. further operations may only be carried out after the error message has been cleared. Error messages with a code no. less than 70 may be cleared using the CE key. Error messages with a code no. of 70 or more represent more serious faults in the electronics of the POSITIP or on the transducers. These messages may be cleared by switching off the POSITIP (and repairing the fault). The code no.'s representing the various errors are given in the following table:

Error	Meaning	Remedy	To delete error message
00	Power interruption		CE - key
03	A check of the contents of the program memory has produced an error: the program memory has been deleted.	Re-enter the program. If the Baud-Rate is not 2400 , then it must be re-entered. Reset the zero-point.	CE - key
04	Change batteries! Operation is possible with discharged batteries, but the program memory will be lost when the POSITIP is switched off.	1. If this error is indicated during operation with the POSITIP: batteries must be changed within 24 hours. 2. If this error is indicated when the POSITIP is switched on: change the batteries at once with mains left on.	CE - key

05	This key is inoperative in the present operating mode.	\cdots	CE - key
06	$\left[\begin{array}{l}60 \\ 10\end{array}\right]$ with illegal input value has been programmed.	Enter the correct value: $0 . .400$ integers only.	CE - key
07	rool has been programmed with an illegal tool no.	Enter the correct value: 1... 15 integers only.	CE - key
08	[with an illegal tool no.	Enter the correct value: 1... 15 integers only.	CE - key
09	Capacity of program memory has been exceeded.		(CE - key
10	[DEL key: blocks may only be deleted after they have been displayed (no./ contents)	Select block with the \square 60 10 10 key	CE - key
11	DREF block for the specified tool is missing	Define tool length or enter $\left.\begin{array}{c}\text { rool } \\ \mathrm{CALL}\end{array}\right]$ with the correct tool no.	CE - key
12	$\underset{\substack{R \\ D E F}}{ }$ block for the specified tool is missing	Define tool radius or enter $\begin{aligned} & \text { Coall w wh the } \\ & \text { Cal }\end{aligned}$ correct tool no.	CE - key
13	Programmed path to be traversed $=0$: radius compensation undefined.	Enter path to be traversed	CE - key

14	Programmed traversing direction has been reversed by the radius compensation.	Alter the program: the path to be traversed must be greater than the radius compensation	CE - key
15	Attempt to execute an illegal program block	Delete block and re-enter	CE - key
16	Illegal Baud Rate entered	Enter the correct value: $\begin{aligned} & 110,150,300,600,1200, \\ & 2400 \end{aligned}$	CE - key
17	External program entry: faulty data transfer (Error resulted from checks of EVEN-parity, non-matching Baud-Rates, too high a speed of symbol transfer)	Devices with a Baud Rate >110 must be equipped with an automatic punched-tape-reader start/stop control.	CE - key
18	External program entry: Symbol transfer too fast	Devices with a Baud Rate >110 must be equipped with an automatic punched-tape-reader start/stop control.	$C E \text { - key }$
19	External unit not ready	Check external unit and connection	CE - key

26	Unknown error message from ME.	Repeat data transfer from the beginning.	CE - key
27	External data transfer interrupted with the $\begin{gathered}\text { OEI } \\ 0\end{gathered}$ key	If error is still present after repeated attempts, use data carrier (punched	
28	External program entry: erroneous program-data received	correct program contents.	
9	Attempt to change batteries with at least one axis "frozen" in the "REF" mode.	Traverse the "frozen" axis over the reference mark or switch off REFmode.	CE - key
31	External start with empty program memory	Enter program into memory	CE- key
33	Display or entry of Baud Rate in operating mode NCH.	Switch off $\mathrm{INCH}^{\text {che }}$ mode.	CE- key
39	Key inoperative after	Press the correct key	
40		Enter correct value: $\begin{aligned} & 0 \ldots 99 \\ & 1 \ldots 99 \end{aligned}$	CE- key
41	Incorrect position of comma in entry data $\left.\begin{array}{l}\mathrm{LBL} \\ \mathrm{CAL}\end{array}\right]$	Either two figures or none at all permitted	CE - key

42	[100	Enter correct value: $\text { 1... } 99$	CE - key
43	integer.	Enter an integer value	CE - key
44	Execution of a $\left.\begin{array}{c}\mathrm{CRL} \\ \mathrm{CAL}\end{array}\right]$ block: label no. does not appear in the program	Correct label no. or insert label	CE - key
45	Subroutine execution: LBL 0 is missing or subroutines nested too deep.	Insert LBL 0 or change structure of program.	CE - key
47	$\underset{\substack{\text { Leq } \\ 5 \mathrm{ET}}}{ }$: label no. entered has already been allocated	Select new label no.	CE - key
60	Erroneous data received by ME.	Repeat data transfer	CE - key
61	No cassette in ME.	Insert cassette	CE - key
62	ME-cassette is write- protected (protected against erasure)	Insert write-enable pin	CE - key
63	ME in incorrect operating mode	Select correct operating mode	CE - key
64	```Error in test-value detected during play-back of ME-tape```	Re-enter program. If error is still present, then either the tape or the winding mechanism is defective.	CE - key

65	ME-cassette is empty.	Insert cassette with program contents	CE - key
66	ME data transfer process interrupted by stop key (on ME)	Repeat data transfer	CE - key
67	ME: end of tape reached.	Repeat entire process with ME (normally the end of the tape will not be reached with the POSITIP)	$C E \text { - key }$
	Serious faults:		
70	Operating software: memory 1 defective	Switch off power and then switch back on. If error message reappears, send POSITIP for repair.	Switch off power
71	Operating software: memory 2 defective		
72	Operating software: memory 3 defective		
73	Program memory for workpiece programs is defective		
74	Baud Rate memory defective		
77	Microprocessor faulty	Switch off power and then switch back on. If error message reappears, send POSITIP for repair.	Switch off power

When the POSITIP is switched on, the system RAM memory is tested. In the event of a defect, the normal startup condition occurs: all display lamps will flash. The POSITIP must be sent to HEIDENHAIN for repairs.

Functions of keys in the various operating modes

Key	Actual value display	Positioning with display of remainder of traverse	Program entry and editing	Single-block and automatic program run	See section
$\begin{array}{\|l\|} \hline \text { LeF } \\ \hline \end{array}$			Tool-length definition		F2
$\begin{array}{\|l\|} \hline \\ \hline 0 E F \\ \hline \end{array}$			Tool-radius definition		F2
y			Tool call		F3 \qquad
$\begin{array}{ll} \mathrm{R}+\mathrm{R} & \\ \hline \end{array}$		Setting direction of radius compensation	Setting direction of radius compensation		F4. 2
I		Absolute/ incremental input	Absolute/ incremental input		F4.1

[^0]: Any desired operating mode may now be selected or a new block may be entered．

