Operating Instructions

VRZ 740, 780

Bidirectional Counters

DR. JOHANNES HEIDENHAIN

Precision Mechanics, Optics and Electronics - Precision Graduations Post Box 1260 • D-8225 Traunreut • Telephone (08669) 31-1
Telex: 056831 • Telegramme: DIADUR Traunreut

I. Setting up and maintenance

1.1

Items of delivery

Bidirectional counter
VRZ 740
Bidirectional counter
VRZ 780 for 2 axes or
for 3 axes
Replacement fuse 0.4 A slow-blow (in small compartment at rear of counter) Mains coupling, separate optional: mains cable 2.7 m long
Operating instructions and certificate of inspection

1.2 Technical specifications	Type	VRZ 740 (2 axes display) VRZ 780 (3 axes display)
Mechanical data	Housing design	table model, cast housing
	Dimensions	W $270 \times \mathrm{H} 221 \times$ D 172 mm
	Weight	approx. 5.6 kg
	Operating temperature Storage temperature	$\begin{aligned} & 0^{\circ} \text { to }+45^{\circ} \mathrm{C} \\ & -30^{\circ} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Electrical data	Inputs	for Heidenhain transducers with grating pitch $20 \mu \mathrm{~m}$
	Scanning frequency	25 kHz max.
	Cable length	max. 20 m
	Digital displays: position value displays keyboard display	7-segment LED's $71 / 2$ decades with sign
	Metric/Inch converter Display step	static, active for all displays $1 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$ or $0.00005^{\prime \prime}$ or $0.0001^{\prime \prime}$ selectable
	Datum points Reference mark evaluation	4 floating datum points The reference mark positions for all datum points are automatically stored independent of power supply. After power failure, all datum points can be reproduced by simply passing over the reference marks once.
	Delta key	conversion of entered absolute dimensions into incremental dimensions (= "target" positioning)
	Tool radius compensation	keys for entry, and addition to value in keyboard display, or subtraction from value in keyboard display (stored independently of power supply)
	Dimmer switch	adjustment of display brightness

VRZ 740
(2 axes)

view A

2. Mounting possibilities

The counter is cased in a cast aluminium housing. The feet of the unit are provided with M5- tapped holes which enable securing onto tables or consoles from underneath by means of screws (see drawing of dimensions).

A further mounting possibility is provided by securing the counter rear onto an angle iron or pipe. Drill and tap required holes in accordance with dimensions as indicated in drawing of "rear panel" at any location within the shaded areas. If the indicated dimensions are not strictly observed then
this might result in penetration of the housing and swarf entering the counter interior may cause malfunctions!

view A

sectional view $B-B$

3. Connect transducers,
 mains connection

CAUTION: Do not engage or disengage any connectors whilst equipment is under power.

3.1

Protection

The front panels and the operating panel of the counters are splashwater-proof.
The counters are provided with failure signal (see page 10).
Counters VRZ 740/780
correspond to protection classification I of the VDE-regulations VDE 0411 and are built and tested in accordance with DIN 57411 part 1/VDE 0411 part 1
"Protective measures for electronic measuring equipment". In order to maintain this condition and to ensure safe operation, the operator must comply with the instructions and warnings which are contained in these operating instructions.

3.2

Connection of transducers

VRZ 740/780

All HEIDENHAIN linear transducers with $20 \mu \mathrm{~m}$ grating pitch
can be connected to VRZ 740/780.
If the standard 4 -fold pulse evaluation is modified to 2 -fold (see 3.6 page 9) linear transducers with
$10 \mu \mathrm{~m}$ grating pitch
may also be used.

Angle encoders ROD without built-in pulse shaping electronics (e.g. ROD 450) can also be connected. Please observe that the scanning signals are then interpolated electronically 20 -fold or 10 -fold (after modification of the pulse evaluation) within the counter.

The transducer is connected via a 9-pole flange socket
(Heidenhain Ident-No. 20071901).

contact designation	3	4	1	2	5	6	7	8	9^{*}
	+	-	+	-	+	-	+	-	
Connector									

[^0]
3.3
 Selection of mains voltage

The counters are set to $220 \mathrm{~V} \sim$ when supplied, and can be converted to $100,120,140,200$ or $240 \mathrm{~V} \sim$:

After removing mains fuse holder,
set voltage selector to desired voltage by using a coin; replace mains fuse holder.

Mains voltage selection

Exchanging mains fuse

3.4

Mains connection

Wire.mains cable to enclosed mains coupling (compl. mains cable available as
accessory) and insert mains coupling into
mains socket of counter. Push down
safety clamp.

Wiring of Mains Coupling

CAUTION

Mains connection to contacts

3.5

Counting direction

The transducers are supplied as follows:

The counting direction can be altered for each axis individually by shifting the counting direction switch 1, 2 or 3 beneath the cover at rear of counter.

3.6

Pulse evaluation

The pulse evaluation may be altered for all axes simultaneously at switch 4 of the counting direction selector from the standard 4 -fold evaluation to 2 -fold.
This setting permits connection of linear transducers with $10 \mu \mathrm{~m}$ grating pitch to the counter.

By deciding upon counter VRZ 740/780, you have purchased a unit which, due to the practical design, makes positioning easier, quicker and more economical. This counter offers the possibility of setting several datum points. Furthermore, it is possible to position with "target" counting whereby the tool radius can be simultaneously taken into account. Re-establishing the correlation between datum points and reference marks of the LS system is "automated".
Traversing over the reference marks once is sufficient to calibrate the counter in all axes. (Previous determination of the position value for the datum point is not required.)
In addition to these advantages, the counters are provided with keyboard entry (keyboard display), selectable display step, $\mathrm{mm} / \mathrm{inch}$ converter, dimmer, direction switch and pulse evaluation selector. When reading the following explanations, it is recommended to refer to the illustration of the operating panel on page 20. The encircied figures (1), (2), (3)...) of a 3 axes counter are explained in this illustration.
1.1

Absolute mode and incremental mode In the absolute mode all measurements refer to the "absolute" datum point, whilst in incremental mode each immediately preceding position serves as datum point.

Absolute mode

Example:
The left upper corner is the "absolute datum point" for the measurements

The machine is to be positioned to a certain dimension.

Incremental mode

Example:
Measurements are carried out - starting
from the left upper corner - in increments

The machine is to be traversed by a certain distance.
1.2

Instructions for key-in of position values or dimensions
Entry errors can be cleared by means of the CE (4).
Values are entered in "mm" or "inch", whereby key-in of trailing zeroes is not required.
An entered value remains within the keyboard memory until it is overwritten by a new value or cleared with the CE button (4). The finest decade of the keyboard display is rounded off to digital step 0.002 mmin operating mode "metric" $2 \mu \mathrm{~m}$, and to 0.00005 inch in "imperial" operating mode 0.00005
An entry value can be preset into the position displays (16) or can be repeated any number of times as an incremental dimension - in any axis and with changing sign (see item 2.2).
Only negative sign " - " is displayed. Each actuation of the sign change key $t-1$ will change the sign of the value in the keyboard memory. For entry of negative values, the following is applicable: first enter value, then negative sign.
If the entered value in the keyboard display is too large $\gg 5079.999 \mathrm{~mm}$ or 199.99995 inches), then each numeral in the keyboard display will illuminate with decimal point.

1.3

Traversing over reference marks when first setting up
After initial connection of transducers, all REF-memories of the counter must be "activated".

\downarrow_{1}	REF 温

press REF key (15):
reference mark indicators (17) in the position displays illuminate.
Traverse over reference marks in all axes; reference markindicators areextinguished.

1.4

Failure signal

Failure of a transducer, cable defects etc. are indicated by flashing of the appropriate position display (16).
Switch off counter, remedy the fault and re-active counter. Alternatively, the failure signal can be cancelled by pressing the REF key (repeat, if reqd.).

Operating condition each time counter is switched on

	Keyboard display Position display		" 0 " Displayed position values indicate correlation between established datum point 1 and reference mark.
REF	REF key	(16)	"OFF"
\otimes			
$\begin{gathered} \mathrm{mm} \\ \otimes \end{gathered}$	mm/inch button	(14) . . . metric or Imperial (depending on last mode chosen) Random switch-over from "mm" to "inch" and vice-versa during measuring procedure, whereby the displayed values and all stored values are simultaneously converted.	
\otimes			
inch			
$0,001 \mathrm{~mm}$			
0.00005 inch垱	Display step		With the display step button (13) either0.001 mm or 0.002 mm or $\quad 0.00005$ inch or 0.0001 inch can be selected as display step for the position display.
$0,002 \mathrm{~mm}$			
0.0001 inch			
DIM	Display brightness		maximum brightness dimmer switch (12) for two brightness settings

2. Establishing datum point

2.1

Selection of datum point

The counter permits establishing of four floating datum points for the position displays. The dimensioning of a workpiece may be referenced to different datum points, i.e. in the following example, datum point $\$ 1$ can be referenced to the workpiece edge as starting point, and the other datum points can be referenced to the centering points of the bore holes for positioning of the incremental dimensions:
Prior to setting a datum point, one of the datum point keys (6) 1 is to be pressed - the corresponding indicator lamp (5) illuminates.
Switch-over between datum points is possible at any time.

Preset

Presetting assigns fixed display values to
all positions.
Zero is often selected as datum point:

datum point$\not{ }^{1 .} .$	CE or 0	press clear button (4) or zero	keyboard display (18) shows "0"
	$X \quad Y \quad Z$	press axis keys (1)	"0" appears in position display (16)

The counter can be preset to any datum
values as follows:

datum point$\text { 1. . . } 4$	$0 \ldots 9$			position value for workpiece datum point (= reterence value) entered: (2)	datum value appears in keyboard display (18)
	X	Y	Z	press appropriate axis key (1)	datum value appears in position display (16)

If machine axes are now traversed, then VRZ 740/780 always indicates the actual position with reference to the selected datum point. For presetting a determined absolute position value (absolute nominal position), traverse individual machine axes such that the pre-determined position value appears in the position displays (16).

For incremental dimensions two procedures are possible: either traverse to required dimension by assigning value zero to the starting position, or preset the nominal value and position with "target" counting to zero.

2.3

Reference mark evaluation "REF"
In the case of switch-off of VRZ 740/780 or power failures the established correlation between positions and display values is lost.
If the momentary position is known (e.g. from the drawing), then the position values can be directly re-entered in accordance with item 2.2.
If this is not the case, then the datum points which were established last can be reproduced by means of the REF key. Immediately upon counter switch-on, all digits of the position displays will show zero; the position displays (16) will then jump to those position values which had been assigned to the transducer reference marks by establishing the datum point $\downarrow 1$ prior to the operational interruption. When switching to $\varnothing_{2}, \phi_{3}$ or \downarrow_{4}, the reference mark position values with regard to these datum points will be displayed. In order to reproduce the datum point, simply press the REF key and traverse over reference marks in all axes - displays are activated and show the position values with reference to the selected datum point $\downarrow 1, \downarrow_{2}, \downarrow^{3}$ or \downarrow_{4}.
This procedure is explained in detail as follows:
（after operational interruption or power
failure）
a）selected counting mode prior to interruption：mm

$\begin{aligned} & \text { 淫 } \\ & \$ 1 \\ & \$ 1 \end{aligned}$	$\frac{\mathrm{REF}}{\otimes}$	$\begin{aligned} & \text { mm } \\ & \text { 渻 } \\ & \square \\ & \square \end{aligned}$	$X+0000000$	\otimes	display immediately after counter switch－on
	$\begin{gathered} \mathrm{REF} \\ \hline \otimes \end{gathered}$	$\begin{gathered} \text { mm } \\ \text { 沙 } \\ \square \\ \square \end{gathered}$	$x+67.070$	\otimes	display value approx． 1.5 sec ．after switch－on of counter dimension $67.07=$ position value of X－reference mark for datum point ${ }_{\downarrow}$
	$\begin{gathered} \text { REF } \\ \text { 渉 } \end{gathered}$	$\begin{gathered} \text { mm } \\ \text { 㓥 } \\ \square \\ \square \end{gathered}$	$x+67.070$	棌	if REF key is pressed，the REF indicators in the position display illuminate－counting function ceases
	$\begin{aligned} & \hline \text { REF } \\ & \text { 湡 } \end{aligned}$	$\begin{gathered} \mathrm{mm}_{\substack{\text { 消 } \\ \text { 罧 }}}^{\square} \end{gathered}$	$\begin{aligned} & X+67.070 \\ &+67.071 \\ &+67.072 \end{aligned}$	\otimes	machine traverse over reference mark of X－transducer． REF indicator is extinguished and counting is resumed． The displayed position value corresponds to the X －machine position for the selected datum point ${ }_{\phi} \mathbf{1}$ ： counter is calibrated in X －axis

b）selected counting mode prior to interruption：inch

$\begin{aligned} & \text { 湿 } \\ & 1 \\ & 1 \end{aligned}$	REF \otimes	$\begin{aligned} & \text { mm } \\ & \text { 渻 } \\ & \square \\ & \square \end{aligned}$	$x+0000000$	\otimes	display immediately after counter switch－on
	$\begin{gathered} \hline \text { REF } \\ \hline \otimes \end{gathered}$		$x+2.64065$	\otimes	display value approx． 1.5 sec ．after counter switch－on dimension $2.64065^{\prime \prime}=$ position value X －reference mark for datum point \downarrow^{1}
	REF		$x+2.64065$	隠	if REF key is pressed，the REF indicators in the position displays illuminate－counting function ceases
	REF 渻		$\begin{array}{r} x+2.64065 \\ +2.64070 \\ +2.64175 \end{array}$	\otimes	machine traverse over reference mark of X－transducer． REF indicator is extinguished and counting is resumed． The displayed position value corresponds to the X－machine position for the selected datum point ϕ_{1} ： the counter is calibrated in X －axis

REF remains activated；illumination of the REF lamp indicates that the REF values （position values relative to the reference mark）are automatically stored when a datum point is established and thus are available for re－establishing this datum point after power interruptions．If the reference marks are inaccessible （e．g．workpiece and milling tool are clamped and reference mark cannot be traversed over）REF should be switched off．

3. Positioning with "target" counting

In conjunction with the \triangle-key (11), absolute dimensions can be positioned through
"target" counting.
This mode of positioning is more convenient and safer than "traversing to a nominal value". Even with inexact positioning (value other than zero in the position display), errors in this operating mode will not be accumulative as the deviation is automatically taken into account with the next positioning step in this axis.
When entering the nominal dimension, e.g. 120 mm , the position display shows the deviation from the nominal value " -70 mm ": in order to position the nominal value, machine must be traversed in " + " direction.

		Position display	Keyboard display	
		$X+50.00$	0.00	e.g. 50.0 in position display = actual position referenced to datum point ${ }^{2}$ 1

4. Tool radius compensation (7)

With the three $\frac{0}{2}$-keys, the tool radius can be taken into account without calculations during positioning.
For example, key-in milling cutter
diameter: by pressing the $-\frac{0}{2}-$-key (10)
the milling cutter radius is stored.

The value remains in memory until a new diameter is entered (even after switch-off of the counter).
If working only with one milling cutter in an operation, it is recommended to store the milling cutter radius prior to starting.

0	enter diameter value (2)	diameter value appears in keyboard display (18
$\rightarrow \frac{0}{2}$	$\rightarrow \frac{0}{2}$-key pressed (10)	milling cutter radius is stored and appears in keyboard display (18)

When working with several milling cutters, the appropriate radius is to be entered after each tool change.
After pressing the $+\frac{0}{2}-k e y$ (9) the milling cutter radius is added to the value in the keyboard display (18 , or subtracted by pressing $-\frac{0}{2}-$ key (8).

Pressing twice will result in addition or subtraction of the total diameter.
After compensation, the value is transferred or preset by pressing the appropriate axis key as usual. In conjunction with the \triangle-key, positioning is simply carried out with "target" counting to zero (also see example on page 18)!

5. Setting lines of symmetry

The three $\frac{0}{2}$-keys can also be utilized for axially symmetrical hole arrangements

$\downarrow 1$	2 \square 5 \square 3 3				store symmetry dimension 25.30 by means of $\frac{D}{2}$ key	$12.650=$ symmetry dimension: 2 appears in keyboard display
	X				press \triangle-key and axis key	0 appears in position display
$\begin{aligned} & \triangle \triangle \\ & \text { 棌 } \\ & \$ 1 \end{aligned}$	2 6 \square 2 \square $-\frac{0}{2}$ X				enter 26.25 and then press \square and axis key	13.600 appears in keyboard display $X=-13.600$ appears in position display

position machine by "target" counting for borehole 1 and drill hole

$+\frac{0}{2}$	press $+\frac{\mathrm{D}}{2}$ twice	$38.900(=$ deviation from nominal value) appears in keyboard display - after pressing axis key -25.300 appears in the position display
X	press axis key	

position machine by "target" counting for borehole 2 and drill second hole

6．Operating examples

6.1

1．Example

Working with several datum points．
Several identical workpieces are to be machined with 4 boreholes．If the appropriate values are referenced to the datum points during machining of the first workpiece，then a＂program＂has been stored，i．e．all further identical parts can be positioned by calling up the individual datum points（without re－entering of dimensions or re－checking drawing）．

\downarrow^{1}	$\begin{array}{l\|} \hline \mathrm{CE} \\ \hline \triangle \\ \hline \mathrm{X} \\ \hline \end{array}$	press clear key and axes keys press delta key	preset datum point 1
蝺	3 0 X 1 1 1 5 Y	enter distance values to first borehole	$\begin{aligned} & X=-30 \\ & Y=-15 \end{aligned}$ appears in position display
	position machine towards zero		
¢	$\begin{aligned} & \mathrm{CE} \\ & \mathrm{X} \\ & \hline \mathrm{Y} \end{aligned}$	address datum point 2 press clear key and axis key	datum point 2 preset
\downarrow^{1}	$\begin{aligned} & \triangle \\ & \boxed{6} \quad 5 \quad[x \end{aligned}$	address datum point \downarrow^{1} once again press \triangle－key enter dimension $\mathrm{X}=65 \mathrm{~mm}$	boreholes are dimensioned from datum point ${ }_{9}{ }^{1}$ deviation from nominal value $=-35 \mathrm{~mm}$ appears in position display
沙	position machine towards zero		
	3 Y	enter dimension $\mathrm{Y}=35 \mathrm{~mm}$	deviation from nominal value $=-20 \mathrm{~mm}$ appears in position display
	position machine towards zero		
\downarrow	CE $\begin{array}{\|l\|l} \hline X & Y \\ \hline \end{array}$	select reached position as datum point ${ }_{\phi}{ }^{3}$ press clear key and axis keys	datum point \downarrow^{3} preset
\downarrow		address datum point $\$ 1$ once again press \triangle－key enter dimension $X=30 \mathrm{~mm}$	$X=+35 \mathrm{~mm}$ appears in position display
棌	position machine towards zero		
	15	enter dimension $\mathrm{X}=15 \mathrm{~mm}$	$\mathrm{Y}=+20 \mathrm{~mm}$ appears in position display
	position machine towards zero		
$\frac{1}{1}$ or $\downarrow 2$	\triangle	switch off \triangle－key	drill is positioned on first borehole $\begin{aligned} & X=30 \\ & Y=15, \text { i.e. deviation from datum point }{ }_{\downarrow} 1 \end{aligned}$ appears（for checking only） or $\begin{aligned} & X=0 \\ & Y=0 \end{aligned}$ with datum point \downarrow_{2}

When the next workpiece is placed into the jig，then the 4 boreholes can be directly positioned by call－up of the various datum points．

The same example is applicable to inner contour milling（with＂target＂counting－ however，ensure that tool radius is taken into account）．

6.2

2.Example

(for several datum points and tool radius compensation)
Face C is to be milled and boreholes I, II, III drilled in main and auxiliary dimensioning on a workpiece:

Example: (mm)

* see table page 19

[^0]: * internal shield to pin 9
 external shield to connector housing

