

Product Information

ERN 1085

Incremental Rotary
Encoder with Z1 Track

Special Product

- only on request -

ERN 1085

- Rotary encoder with mounted stator coupling
- Compact dimensions
- Blind hollow shaft Ø 6 mm
- Z1 track for sine commutation

mm
-1 ()
Tolerancing ISO 8015
ISO 2768 -m H
$<6 \mathrm{~mm}$: $\pm 0.2 \mathrm{~mm}$

[^0]| | ERN 1085 |
| :---: | :---: |
| Incremental signals | $\sim 1 \mathrm{VPP}^{11}$ |
| Line count*/
 System accuracy | $\begin{array}{r} 512 / \pm 60^{\prime \prime} \\ 2048 / \pm 40^{\prime \prime} \end{array}$ |
| Reference mark | One |
| Cutoff frequency -3 dB | $\begin{array}{r} 512 \text { lines: } \geq 100 \mathrm{kHz} \\ 2048 \text { lines: } \geq 350 \mathrm{kHz} \end{array}$ |
| Absolute position values | $\sim 1 \mathrm{VPP}^{11}$ |
| Position values/revolution | Z1 track for sine commutation: One sine and one cosine signal per revolution |
| Voltage supply | $5 \mathrm{~V} \mathrm{DC} \pm 0.5 \mathrm{~V}$ |
| Current consumption without load | $\leq 120 \mathrm{~mA}$ |
| Electrical connection | Cable 1 m without connecting element |
| Cable length | $\leq 150 \mathrm{~m}$ |
| Shaft | Blind hollow shaft $\varnothing 6 \mathrm{~mm}$ |
| Mechanically permissible speed n | 12000 rpm |
| Starting torque | $\leq 0.001 \mathrm{Nm}$ (at $20^{\circ} \mathrm{C}$) |
| Moment of inertia of rotor | $\approx 0.5 \cdot 10^{-6} \mathrm{kgm}^{2}$ |
| Permissible axial motion of measured shaft | $\pm 0.5 \mathrm{~mm}$ |
| Vibration 55 Hz to 2000 Hz Shock 6 ms | $\begin{aligned} & \leq 200 \mathrm{~m} / \mathrm{s}^{2}(\text { EN 60068-2-6) } \\ & \leq 1000 \mathrm{~m} / \mathrm{s}^{2}(\text { EN 60068-2-27) } \end{aligned}$ |
| Max. operating temperature | $100^{\circ} \mathrm{C}$ |
| Min. operating temperature | $\begin{array}{ll}\text { Fixed cable: } & -30^{\circ} \mathrm{C} \\ \text { For frequent flexing: } & -10^{\circ} \mathrm{C}\end{array}$ |
| Protection EN 60529 | IP 64 |
| Mass | $\approx 0.1 \mathrm{~kg}$ |

* Please select when ordering
${ }^{1}$ Limited tolerances
Signal amplitude: $0.80 \mathrm{~V}_{\mathrm{PP}}$ to $1.2 \mathrm{~V}_{\mathrm{PP}}$

Assembly

The ERN 1085 rotary encoder features an integral bearing and mounted stator coupling. The stator coupling compensates radial runout and alignment errors without significantly reducing the accuracy. The encoder shaft is directly connected with the shaft to be measured. During angular acceleration of the shaft, the stator coupling must absorb only that torque resulting from friction in the bearing.

Mounting

The rotary encoder is slid by its hollow shaft onto the measured shaft and fastened by two screws.

Dynamic applications require the highest possible natural frequencies f_{N} of the system. These are achieved through a stator coupling by four screws or with special washers (see Mounting accessories).

Mounting accessories

Washer

For increasing the natural frequency f_{N} when fastening with only two screws ID 334653-01

Interfaces

Commutation signals for sine commutation

The commutation signals \mathbf{C} and \mathbf{D} are taken from the Z 1 track, and are equal to one sine or cosine period per revolution. They have a signal amplitude of typically $1 \mathrm{~V}_{\mathrm{PP}}$ against $1 \mathrm{k} \Omega$. The input circuit of the subsequent electronics corresponds to the $\sim 1 \mathrm{~V}$ Pp interface. However, the required terminating resistance Z_{0} is $1 \mathrm{k} \Omega$ instead of 120Ω.

Interface	Sinusoidal voltage signals $\sim 1 \mathrm{~V}_{P P}$
Commutation	Two nearly sinusoidal signals \mathbf{C} and \mathbf{D} signals
For the signal level, see Incremental signals $\sim 1 \mathrm{~V}_{P P}$	
Incremental signals	See Incremental signals $\sim 1 \mathrm{~V}_{P P}$
Connecting cables	Shielded HEIDENHAIN cable PUR $\left[4\left(2 \times 0.14 \mathrm{~mm}^{2}\right)+4\left(2 \times 0.14 \mathrm{~mm}^{2}\right)+\left(4 \times 0.5 \mathrm{~mm}^{2}\right)\right]$ Cable length
Max. 150 m	
Propagation time	$6 \mathrm{~ns} / \mathrm{m}$

Electronic commutation with $\mathrm{Z1}$ track

Pin layout

17-pin coupling M23			\square				17-pin connecto M23			\square	
	Voltage supply					Incremental signals					
『 \ddagger	7	1	10	4	11	15	16	12	13	3	2
	$U_{\text {P }}$	Sensor Up	OV	Sensor 0 V	Internal shield	A+	A-	B+	B-	R+	R-
\longrightarrow	Brown/ Green	Blue	White/ Green	White	/	Green/ Black	Yellow/ Black	Blue/ Black	Red/ Black	Red	Black

	Other signals			
■- 『च	$\mathbf{1 4}$	$\mathbf{1 7}$	$\mathbf{9}$	$\mathbf{8}$
	$\mathbf{C +}$	$\mathbf{C}-$	D+	D-
\square	Gray	Pink	Yellow	Violet

Shield on housing
UP = Power supply
Sensor: The sensor line is connected internally with the corresponding power line.
Vacant pins or wires must not be used.

Cables and connecting elements

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

(2) +49 8669 31-0

EACX +49 8669 32-5061
E-mail: info@heidenhain.de
www.heidenhain.de

This Product Information supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the Product Information document edition valid when the order is made.

(1]) For more information:

Comply with the requirements described in the following documents to ensure the correct operation of the encoder:

- Brochure: Encoders for Servo Drives 208922-xx
- Brochure: Interfaces of HEIDENHAIN Encoders 1078628-xx
1206103-xx
- Brochure: Cables and Connectors .de.

[^0]: \triangle = Bearing of mating shaft
 $\mathbb{\circledR}$ = Required mating dimensions
 $\mathbb{(1)}=$ Measuring point for operating temperature
 (1) $=2$ screws in clamping ring. Tightening torque $0.6 \pm 0.1 \mathrm{Nm}$, width across flats 1.5
 (2) $=$ Reference mark position $\pm 20^{\circ}$
 (3) = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted
 (4) $=$ Direction of shaft rotation for output signals as per the interface description

